性猛交ⅹxxx富婆视频,天堂网在线最新版www天堂种子,玩弄japan白嫩少妇hd,午夜精品久久久久久久喷水

X
你好,歡迎來到儀多多。請登錄 免費注冊
儀器交易網
0我的購物車 >
購物車中還沒有商品,趕緊選購吧!

超聲波流量計的優(yōu)缺點 流量計常見問題解決方法

時間:2020-08-19    來源:儀多多儀器網    作者:儀多多商城     

 超聲波流量計是通過檢測流體流動對超聲束(或超聲脈沖)的作用以測量流量的儀表。根據(jù)對信號檢測的原理超聲波流量計可分為傳播速度差法(直接時差法、時差法、相位差法和頻差法)、波束偏移法、多普勒法、互相關法、空間濾法及噪聲法等。超聲流量計和電磁流量計一樣,因儀表流通通道未設置任何阻礙件,均屬無阻礙流量計,是適于解決流量測量困難問題的一類流量計,特別在大口徑流量測量方面有較突出的優(yōu)點。

超聲波流量計的優(yōu)點為: 1、超聲波流量計是一種非接觸式測量儀表,可用來測量不易接觸、不易觀察的流體流量和大管徑流量。它不會改變流體的流動狀態(tài),不會產生壓力損失,且便于安裝。 2、可以測量強腐蝕性介質和非導電介質的流量。 3、超聲波流量計的測量范圍大,管徑范圍從20mm~5m. 4)超聲波流量計可以測量各種液體和污水流量。 4、超聲波流量計測量的體積流量不受被測流體的溫度、壓力、粘度及密度等熱物性參數(shù)的影響。可以做成固定式和便攜式兩種形式。 超聲波流量計的缺點為: 1、超聲波流量計的溫度測量范圍不高,一般只能測量溫度低于200℃的流體。 2、抗干擾能力差。易受氣泡、結垢、泵及其它聲源混入的超聲雜音干擾、影響測量精度。 3、直管段要求嚴格,為前20D,后5D。否則離散性差,測量精度低。 4、安裝的不確定性,會給流量測量帶來較大誤差。 5、測量管道因結垢,會嚴重影響測量準確度,帶來顯著的測量誤差,甚至在嚴重時儀表無流量顯示。 6、可靠性、精度等級不高(一般為1.5~2.5級左右),重復性差。 7、超聲波流量計是通過測量流體速度來確定體積流量,對液體應該測量它的質量流量,儀表測量質量流量是通過體積流量乘以人為設定的密度后得到的,當流體溫度變化時,流體密度是變化的,人為設定密度值,不能保證質量流量的準確度。只能在測量流體速度的同時,又測量了流體密度,才能通過運算,得到真實質量流量值。

    由電磁流量計的工作原理可知,能選用電磁流量計測量流量的流體必須是導電的,嚴格的說,除了高溫流體之外,只是電導率大于20us/cm的任何流體都能選用相應的電磁流量計來測量流量,因為非導電的氣體、蒸汽、油類、丙酮等物質不能選用電磁流量計來測量流量。

電磁流量計在運行中會由于各種故障的發(fā)生會造成測量不準的現(xiàn)象,一般在運行中電磁流量計產生的故障大概可分為兩類。一類為流量計本身故障,元器件損壞引發(fā)的故障;一類為外界條件的改變引起的故障,例如安裝的不合理造成流動畸變,沉積和結垢等。
1、介質中含有氣泡出現(xiàn)測量故障
介質從外界吸入氣體或者介質中溶解氣體轉變成游離狀氣泡是液體中產生泡狀氣體的兩種途徑。如果介質中存在較大的氣泡,當氣泡通過電極時整個電極就被遮蓋,使流量信號輸人回路瞬時開路,從而輸出信號就會出現(xiàn)波動。判斷造成這種波動原因的可以這樣做,將磁場的回路電流斷開,斷開后如果流量計還有顯示并且還處于波動狀態(tài),證明介質中存在氣泡會造成電磁流量計波動。用指針式萬用表測量電磁流量計電極電阻,會發(fā)現(xiàn)電磁流量計電極的回路電阻要高于正常時的電阻值。
若是由于電磁流量計安裝位置所的造成空氣進入被測介質,如果由于在管系高點安裝電磁流量計而貯留氣體,或由于外界吸入空氣引起的流量計波動,則需要更換電磁流量計安裝位置改裝在管線zui低點安裝,或者采用U型管安裝。但是有些情況由于電磁流量計口徑較大或者安裝的位置不易改變,可以采取在流量計上游安裝集氣包和排氣閥來解決這種情況。
2、電磁流量計電極被腐蝕
由于在醋酸生產的過程中會接觸到一些強腐蝕性的介質,所以當電磁流量計的電極材料選擇不當時,介質會腐蝕流量計的電極,zui終導致傳感器失效。因此會出現(xiàn)流量計輸出波動。只有當電極被腐蝕后出現(xiàn)流量計故障我們才能發(fā)現(xiàn)電極材料不耐腐蝕,這種材料本身性能問題使用之前是無法辨別的。因此只有更換新的電極來解決此種故障。所以電極腐蝕故障判斷處理都屬于事后維護處理的方法。 
3、介質非滿管
在日常生產中偶爾會有非滿管現(xiàn)象。這種現(xiàn)象可以看做是液體中含有氣泡的典型情況。當電極水平面低于介質液面時,流量計前后采用直管段比較理想,測量數(shù)據(jù)比較穩(wěn)定。但是管內上半部的氣體體積也被算成介質流量,因此這種情況下得測量誤差較大;當電極水平面高于介質液面時,電磁流量計的測量回路處于開路狀態(tài),所測量的數(shù)據(jù)嚴重失真。處理這種介質非滿管所產生的故障可有如下辦法:盡量在自下而上流動的垂直管道上安裝電磁流量計;實際生產中需要電磁流量計水平安裝,這種情況下應該安裝在管道的zui低端,并將且電磁流量計的電極軸線于地平線平行,(不然沉積物會覆蓋處于低位的電極);為了避免測量管內產生負壓,應該將流量計的傳感器安裝在泵的下游、控制閥的上游;流量計傳感器的安裝口應有一定的背壓,并且應遠離直接排放口。
但是,zui重要的還是電磁流量計在安裝時禁止出現(xiàn)介質非滿管的情況。 
4、待測液體性質導致測量故障
如果被測介質電導率降低,電極的輸出阻抗會增大,這時轉換器輸入的阻抗就會引起負載效應,流量計就會產生測量誤差。如果電磁流量計出現(xiàn)這個故障則只有選用滿足要求的低電導率電磁流量計,或者選用孔板流量計等其它原理的流量計。
5、流量計的電極結垢或電極短路造成的測量故障
當被測液體中含有金屬時,流量計的電極容易發(fā)生短路現(xiàn)象,這時流量計的測量值明顯偏小或趨于零。在日常生產運行中這種現(xiàn)象不是經常發(fā)生的。當測量高粘度介質時,由于介質易附著和沉淀在管壁,若被測液體電導率低于附著的介質電導率時,電極的信號電勢就會被沉淀分流從而不能正常工作,出現(xiàn)電極短路現(xiàn)象;如果沉淀的介質是非導電層,會造成電極開路流量計也不能正常工作。若氧化鐵銹層附著于襯里管壁,或者主要成分是金屬的沉淀物,其電導率大于液體電導率,實際流量值會高于流量計測得的流量值;若沉淀物是碳酸鈣等水垢層,則被測液體的電導率高于沉淀物的電導率,結果測得的流量值會小于實際的流量。
為了防止流體中的沉淀物影響流量計的工作,流量計的電極選用不易附著突出的尖形或半球形,并且可以更換式或者清垢電極等。選用電極可定期手動刮除傳感器外的塵垢?;蛘咭部梢詫y量電路暫時斷開,通以短時間的低壓大電流在電極間,焚燒清除油脂類沉淀物。也可采用提高液體流速的辦法來清掃管壁的附著層。
6、待測介質的非對稱流動
在正常生產的情況下,管道內流體的流速是軸對稱分布,磁場均勻。而實際管道中流體的非軸對稱流速分布經常出現(xiàn),此時,流體流向可分成沿管道軸線的直線流,待測液體的體積流量就是它對管道橫截面的積分;另一種則是旋渦流。由于旋渦流的出現(xiàn)對傳感器的輸出產生影響,流量計就會產生誤差。為了消除旋渦流對流量計傳感器的影響;流量計的上游應該有足夠長的直管段,才能使流體的流速按同心圓分布;流量計附近的管道內徑應與流量計內徑相同,這樣才會使流速分布均勻;不然可用安裝流量調節(jié)器來部分補償上游直管段的不足。
7、外部電磁的干擾
在生產現(xiàn)場存在著管道雜散電流、靜電、電磁波和磁場等干擾源。電磁流量計的流量信號很小,非常容易被外界電磁干擾,而影響了電磁流量計的正常工作。所謂的電場干擾是指,流量計測量管內的電勢平衡被噪聲破壞后出現(xiàn)輸出信號波動異常。
為了減少外部磁場對流量計的干擾,我們要在遠離強磁場源的位置安裝電磁流量計傳感器。另外采取增強屏蔽措施來防止強電場的干擾等。也可以將電磁流量傳感器與管道的連接處做絕緣處理。 
8、流量計襯里變形導致測量波動
流量計的襯里一般都采用氟塑料,這樣流量計的襯里非常容易發(fā)生變形,出現(xiàn)計量故障的現(xiàn)象。襯里發(fā)生變形的主要原因有兩種:一氟塑料襯里滲透進蒸汽發(fā)生熱擴散現(xiàn)象,通常襯里材料、厚度、內外的溫差以及流體和蒸汽的類型、管道壓力等諸多因素決定了滲透的程度;二是取決于氟塑料襯里材料的本身的工藝結構,一般采用聚四氟乙烯作為氟塑料襯里材料,聚四氟乙烯材料無粘結力僅靠壓貼與管壁結合,所以負壓管道不采用此種材質。
為了防止襯里變形,我們一般采取以下措施:增加法蘭和線圈盒之間的隔熱厚度,降低流體溫差減小熱擴散,使襯里內外溫差zui大程度上得到改善,這樣就可以降低滲透率減緩測量管壁內蒸汽的凝聚;此外,將聚四氟乙烯襯里厚度加厚或者更換另外形式的襯里。 
9、其他原因引起的故障
1)雷電打擊。電磁流量計在受到雷擊后容易在線路中感應出高電壓和電流,損壞流量劑。
2)環(huán)境條件變化。一旦流量計的工作環(huán)境條件變化,運行期間出現(xiàn)新的干擾源,儀表的正常工作就會被干擾,流量計的輸出信號就會出現(xiàn)波動。

 案例  電磁流量傳感器與連接管道絕緣,可消除大雜散電流影響[2]

浙江省某自來水公司安裝兩臺DN900MT900型電磁流量計,一臺運行正常,另一臺在1~2h周期內出現(xiàn)有高達50%FS波動。用戶認為兩臺儀表使用條件相仿,故障是由儀表方面原因引起的??辈楝F(xiàn)場周圍環(huán)境,上下游緊接流量傳感器的是兩段長0.5m有良好接地的無襯里短鋼管,然后連接到有水泥襯里的鋼管。接地等電氣連接均符合要求,同時,排除了管網流動脈動可能性。

轉換器與傳感器相距約10m。有一數(shù)百千伏安的三相變壓器裝在附近,分別離轉換器和傳感器約2m和8m。

分析故障原因有以下兩種可能:(1)大功率變壓器產生的磁場干擾;(2)管道上雜散電流干擾。要證明是否是變壓器磁場干擾影響,因要關閉變壓器涉及面廣,安排為第二步檢查,首先檢查是否是管道雜散電流干擾。不加勵磁電流用示波器測量兩極間電勢,其值應為零。然而實際測得峰值Vpp高達1V的波形畸變交流電勢。初步判斷即使良好接地,儀表還會受到管道雜散電流干擾影響。

采取將電磁流量傳感器連同兩段短鋼管與管網管道電氣絕緣,使流量傳感器與液體同電位。儀表投入運行,輸出顯示即呈穩(wěn)定正常,也排除了電力變壓器磁場干擾對流量測量的影響。同時測得干擾電流有60mA AC,電流方向來自流量傳感器上游。

這一措施也適用于有陰極保護電流的管道,作為試排除管道電流干擾影響的方法。

摘 要: 熱式質量流量計基本原理同熱線風速計工作原理一樣,即:基于加熱傳感元件的對流傳熱。熱式質量流量計根據(jù)加熱元件的不同,分為熱線式和熱膜式。由于熱線與熱膜流速計在原理上沒有根本差別,只是加熱元件不同而已。下面我們將以熱線為代表進行工作原理分析。

1 物理基礎——熱傳遞

強迫對流造成的熱耗散,我們稱之為熱損耗。從物理上看,熱損耗相關的參量有:介質的速度;介質和熱線之間的溫度差;介質的物理特性,諸如密度、濃度、粘度和導熱;熱線的物理特性,諸如電阻率、電阻溫度系數(shù)、熱傳導率;熱線的長度和直徑;介質的可壓縮性;流動方向和熱線方向之間夾角。

在考慮上述因素的情況下,我們可以用經驗公式表示如下[9]:

式中:努謝爾(Nusselt)數(shù);為熱耗散;l為熱線的長度;λf為流體的熱傳導率;Tw為熱線的工作溫度;Ta為環(huán)境溫度,一般情況下為流體介質溫度;Rw為熱線在工作溫度Tw為時的電阻;d為熱線的直徑;h為熱傳遞系數(shù);Re=ud/γ雷諾數(shù)(Reynolds);u為流動速度;γ為運動粘度,其值為μ/ρ;μ為動力粘度;ρ為流體密度;Pr=γ/α普朗特(Prandtl)數(shù);α為熱擴散系數(shù);格勒射夫(Grashof)數(shù);g為重力加速度;β為膨脹系數(shù);Mα=u/C馬赫(Mach)數(shù);C為聲速;α為電阻溫度系數(shù)。

2 敏感元件

根據(jù)敏感元件類型,可以分為熱線敏感元件、熱膜敏感元件、集成熱膜敏感元件和薄膜鉑電阻敏感元件。下面分別予以介紹。

2.1 熱線敏感元件

熱線敏感元件的結構如圖所示。將金屬絲(即熱線)焊到兩根叉桿上,叉桿的另一端為插接桿,中間為連接線,連接線外為保護罩,保護罩內為絕緣填料。

根據(jù)熱線敏感元件的選用標準,金屬絲的材料和尺寸選擇取決于靈敏度、空間分辨率和強度等方面的綜合要求,通常選用鎢絲或鍍鉑鎢絲作為熱線敏感元件。金屬絲線徑d一般為4um~5um,最細可到0.25um。線長l一般為1.25mm,最短可達0.1mm。鎢絲強度好,熔點溫度高達3400℃,但容易氧化,因此只能用于250℃以下。鉑金絲易脆,抗拉程度僅為鎢絲的5.7%,但不易氧化。作為兩種材料相結合的鍍鉑鎢絲,兼具抗拉程度高,抗氧化程度強的雙重優(yōu)點。

熱線敏感元件的機械強度不高,能承受的電流較小,因此不適宜在液體和帶有顆粒的氣體中工作。

2.2 熱膜敏感元件

為了將熱線測量技術應用到液體流量的測量,發(fā)展了熱膜敏感元件。它的機械強度較高,所以能適應某些條件較惡劣的流場(如污水流動的流場等)。熱膜敏感元件是由沉積在熱絕緣襯底(通常為石英)上的0.01um薄的鉑金屬或鎳膜構成的。最一般的襯底形狀是圓錐型、楔型和圓柱型等。

熱膜敏感元件由熱膜、襯底、絕緣層和導線幾部分構成。敏感元件膜是由確保敏感元件厚度能夠均勻的陰極濺射法沉積而成的。一個較厚的傳導材料層被用于把膜的終端連接到電子加熱電流源。膜通常覆蓋了具用1um~2um厚的石英沉積層(或類似的絕緣層)。這個覆蓋層保護了熱膜免于粒子摩擦并且對于液體中的熱膜探針提供了電絕緣。對于圓柱形熱膜探針來說,其直徑d約為25um~70um,長度l約為1mm~2mm。

2.3 集成熱膜敏感元件

基于微機電系統(tǒng)(MicroElectroMechanicalSystem)技術,利用濺射方法在半導體硅片或玻璃底片上形成三個鉑薄膜電阻,它們分別是微加熱器、加熱器溫度控制器、溫度傳感器。其工作原理是以加熱器和流體的熱傳導為基礎,通過計算加熱器的熱量損失來確定流量。

集成熱膜敏感元件具有靈敏度高,幾何尺寸小,動態(tài)響應快等優(yōu)點。這種微型傳感器穩(wěn)定性好,精度高,壓損小,一致性好,可進行批量生產。

2.4 薄膜鉑電阻敏感元件

薄膜鉑電阻的制作與熱膜敏感元件基本類似,即將金屬鉑在真空條件下,采用濺射的方法沉積于陶瓷或玻璃基片上,并經刻劃、引線、涂釉、燒結退火等工藝制成。

薄膜鉑電阻作為一種新型的測溫元件,具有尺寸小、響應快、易于與集成電路相匹配的特點,且具有測溫范圍寬、精度高、線性好、性能穩(wěn)定等優(yōu)點。目前廣泛應用于化工、能源、機電、航空航天、國防等各領域中溫度測量和控制及溫度補償。

根據(jù)實際情況及相關課題的研究,本論文中采用薄膜鉑電阻作為熱膜敏感元件,其溫度特性將在第四章進行詳細的實驗研究。

3 熱式質量流量計的工作模式

目前,在工業(yè)中使用的熱式質量流量計的傳感電路工作模式基本有兩種類型:恒流型和恒溫型。

3.1 恒流工作模式

典型的恒流風速計是由惠斯登電橋和R-C補償電路構成。在恒流工作模式,敏感元件工作溫度(電阻)是變化的,但流過敏感元件的電流是不變的。這樣,就可以通過檢測敏感元件的溫度變化,確定被測量介質的流速。

恒流工作模式的風速計存在的熱滯后效應,所以必須對恒流風速計動態(tài)響應進行補償。恒流流速計的熱滯后效應大,電子補償困難多,難以適應熱膜技術的使用需要,特別是補償本身還必須隨流動速度而變,致使實際使用上存在著諸多不便,因而恒流流速計的發(fā)展實際上困難重重,發(fā)展速度緩慢。同時,由于恒流風速計存在使用不方便,隨著速率的增加輸出信號減小以及敏感元件容易受到損害等問題,所以恒流型工作模式現(xiàn)在一般很少采用。

3.2 恒溫工作模式

恒溫型風速計主要也是由一個惠斯登電橋構成。在恒溫工作模式,敏感元件工作在恒溫條件下(電阻不變)。利用反饋控制電路使熱線溫度和電阻保持恒定。熱線是作為電橋的一臂而存在的。當加有電流的熱線置于流場當中時,由于流體流動的關系,熱線溫度將發(fā)生改變。這種改變立即導致電橋偏離平衡,從而輸出不平衡信號。這個不平衡信號經放大以后又反饋到電橋中,以抑制熱線的溫度改變,補償熱線電阻的變化,從而使電橋恢復平衡,使熱線溫度和電阻保持恒定。

由于恒溫型測量電路易于使用,頻率響應高,低噪聲等一系列優(yōu)點,所以本課題的測量電路采用恒溫型電路。

參考文獻
[1]王池.我國流量計量發(fā)展現(xiàn)狀[J].現(xiàn)代計量測試,2000,8(2):8~11.
[2]蘇彥勛.第一講:流量計量與測試儀表發(fā)展的趨勢[J].電子儀器儀表用戶,1999,6(1):46~48.
[3]盛森芝,徐月亭,袁輝靖.近十年來流動測量技術的新發(fā)展[J].力學與實踐,2002,24(5):1~14.
[4]鄭開銀,蔣大旭.試論氣體流量計今后的發(fā)展方向[EB/OL].中國流量網,http://www.chinaflow.com.cn.

上一篇:數(shù)顯壓力表維護 壓力表常見問題...

下一篇:2021全站儀快速架設技巧,詳...

  • 手機多多
  • 官方微信訂閱號
商品已成功加入購物車!